1 Introduction

1.1 Problem Statement:

Implement a design so that a collection of Roombas will follow a lead Roomba based on certain
specifications.

1.2 Requirements & Constraints:

1.2.1 Functional requirements:

Roombas must be able to exhibit swarm-like behavior

Follower Roombas must follow behind a lead Roomba at a 60 cm

specified distance and angle within 10% error

The follower Roombas should not receive any controls and should rely only on their own sensor
data

The leader Roomba will receive movement directions from a base computer

Components must be able to be powered by Roomba battery

1.2.2 Economical Requirements:
e Components purchased for the Roomba will cost no more than $500
1.2.3 Engineering Standards:

e [EEE 802.11 - Wireless Networking
o Allows easy connection between devices

e [EEE 754 - Floating point arithmetic specifications

o Floating point allows for more precise measurements
e [EEE 1588 - Precision Time Protocol

o Synchronize clocks across roombas
e [EEE 1801 - Unified Power Format

o Track power consumption of the Roomba, to maintain an acceptable charge life.
1.3 Intended Users and Uses:
1.3.1 Users:

e lowa State University Computer Engineering 288 Students and Faculty

1.3.1 Use Cases:

e (reate a swarm of n Roombas.

e Control the lead Roomba, and the swarm follows.
e Play music for the lead Roomba and it moves the swarm, making the swarm “dance”.

2 Project Plan

2.1 Project Management/Tracking Procedures

We will manage our project with KanBan which is an agile methodology management system that focuses on
continuous small changes. KanBan works by visually organizing tasks in columns according to their stage in the
development process. KanBan allows for the backlog of tasks to be constantly changing as well as provides
openness about the progress of the project.

A combination of a KanBan board (probably on Trello) and various GitLab features will help track progress and
manage tasks.

2.2 Task Decomposition

1. Ongoing - Documentation
a. Weekly team meetings
b. Project Documentation
2. Determine Hardware Needs
a. Buy lidar sensors
b. Connect lidar to Roomba
c. Remove unneeded hardware from Roomba (IR and Sonic Sensors)
3. General Roomba Setup
a. Develop template for general roomba control
b. Develop control systems for lidar and servo
4. Implement leader robot algorithm
a. Move algorithm from simulated weBots to classroom Roomba
b. Implement wireless control of leader
5. Implement follower robot algorithm
a. Move algorithm from simulated weBots to classroom Roomba
b. Implement locate and follow protocol for roomba
c. Setup system to distinguish between right and left follower
6. Develop a Routine for Roombas
a. Plan movements for a “dance” that the Roombas follow
b. Implement dance by only controlling the lead roomba
7. Refine Roomba Software and Movements
a. Adjust software to better comply with specifications by client
b. Add programs which enhance ability and responsiveness of Roombas

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Roomba control template is coded and configured with the servo and lidar sensor
o Roomba can set servo position within 2 degrees of error
o Lidar sensor can be read by Roomba and is accurate within 1 inch
o Combo servo and lidar sensor can identify a post representing a roomba
Lead roomba can be operated wirelessly
o Lead Roomba will follow the preset dance routine
o The lead roomba can be controlled by a user
Followers will follow a leader with less than 15% deviation from the prescribed following distance.
o Members of the swarm can observe the distance between them and their leader
o Members of the swarm can observe the angle between them and their leader
o Members of the swarm can adjust accordingly to follow a leader at an acceptable distance
o Members of the swarm can adjust accordingly to follow a leader at an acceptable angle
The swarm can reliably move in formation without falling more than 7 inches out of place.
o A swarm member can distinguish other members between environment objects
o A swarm member can observe distances between one another
o A swarm member can adjust to fit formation based on angle and distance from one another
Develop Roomba routine that uses sound/song as input to control the swarm
o The swarm leader will listen/play/know the song and move accordingly
o The swarm followers will follow the lead roomba without knowledge of the sound

2.4 Project Timeline/Schedule

Fall'21 PHASETWO Spring 22
Section Number TASKTITLE Jan, 18
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Ongoing
1.1 Planning
1.2 Documentation 1
2 Determine Hardware Needs
21 Buy lidar sensors
211 Connect/configure lidar with roomba
22 Remove unneeded hardware from Roomba a
3 General Roomba Setup
31 Develop roomba control template
3.2 develop servo/lidar control system ‘
4 Implement Leader Algorithm
4.1 Move algorithm from weBots
4.2 Implement wireless control 1
5 Implement Follower Algorithm
5.1 Move algorithm from weBots
52 Implement locate and follow protocol ‘
521 Distinguish right and left follower
6 Develop a Roomba Routine
6.1 Plan movements for "dance”
6.2 implement dance by controlling lead roomba
7 Refine Roomba Movements
71 Adjust software to better meet specifications
72 adqvprograms/features which enhance
ability/responsiveness

The Gantt chart starts at the beginning of the 1st semester, but our work is scheduled to start on week 3, that is
around the time we got our group assignments and started discussing the project. Determining Hardware Needs
starts on week 7 of semester 1, this stage will help us gather the equipment needed as well as remove excess, after
this stage we will have a roomba with all the equipment needed to complete the project. Also starting on week 7 of
semester 1 is General Roomba Setup. This stage will configure the roombas with base code that will assist the
algorithm implementation later on, this stage will also develop a control system for the servo and lidar to scan the
area. The Implement Leader Algorithm stage involves moving the previously built algorithm from weBots to the
physical roomba and setting up wireless control, this stage begins on week 11 of semester 1 and ends right before
fall break. Implement Follower Algorithm starts right after fall break on week 14 and goes until after winter break to
the 3rd week of semester 2. This stage will implement the follower algorithm from weBots along with protocols that
allow them to join the swarm. After this task we will have a basic swarm built. On week 4 of semester 2 the Develop
a Roomba Routine stage begins and will take until spring break to build and test a dance controlled by the lead
roomba. The last stage starts after spring break. The Refine Roomba Movements stage works to improve the
functionality of the Roomba to have more accurate control, as well as expand beyond that of the original definitions,
allowing us to use client input to build outside the original scope.

2.5 Risks And Risk Management/Mitigation

e Determine Hardware Needs
o Hardware incompatibility
o The hardware we decided are needed are modeled from the weBots project, and there may not be a
real world parallel for the part.
o There are workarounds that may exist to still make the system work.
o Risk probability: 0.2
e Implement follower robot algorithm
o Algorithm Efficiency
o An algorithm is required to process sensor data, and decide how to move the bots.

o The algorithm may not be efficient enough to calculate a follower bot's next move, causing it to
get further and further away from the leader.
o Risk probability:0. 45

2.6 Personnel Effort Requirements

Hours Task

60 Ongoing - Documentation

15 Determine Hardware Needs

30 General Roomba Setup

30 Implement Leader robot algorithm

40 Implement follower robot algorithm

60 Develop Roomba Routines

Remaining Time | Refine Roomba Software and Movements
235+ Total:

2.7 Other Resource Requirements

e Atleast 3 roombas outfitted with the technology used in CPR E 288
e Wifi chips to operate these remotely
e The LiDAR sensors that were used in the simulation

3 Design
3.1 Design Context

3.1.1 Broader Context

Our project can help autonomous entities organize their movement and position to achieve a common goal.
Many different areas of society have applicable applications that would benefit from the organization of
multiple entities to accelerate or optimize a process.

Area Description Examples
Public health, Fire Rescue Drones Increased ability to locate fire victims
safety, and Carry/disperse fire retardants
welfare
Can function if infrastructure is
broken
Global, cultural, | National Defence Systems. Could lead to different types of
and social software in defensive drones
Environmental Drones which can release fire-fighting Increasing ability of drones used to
chemicals tackle and/or prevent forest fires
Economic Self Driving Cars Ease of development of self driving
cars could lead to lower costs

3.1.2 User Needs

Fire Rescue: Fire rescue needs a swarm which can work autonomously to search for people because internet
and inter-device communication can not be counted on in fire rescue.

Defence Systems: Defence systems need swarms which can work autonomously because then
communication between devices cannot be intercepted, interrupted, or interfered.

Self Driving Cars: Self driving vehicles need to work autonomously with each other and know each others
locations in order to prevent vehicle collisions.

3.1.3 Prior Work/Solutions

We inherited our project from a senior design group last year, they started this project by building a virtual
simulation of the Robot flock. The previous group implemented a design to allow the bots to organize into a
flock with each other using only the sensors on the bots. The simulation code contains most of the logic for
our flock to work, it lacks the design to be easily modified to our physical application but is structured and
documented well which will make it simple to rewrite for our design.

Previous work has been done on flocking in robotics. Prior research has gone as far as fixed wing flocking
examples(CITATION). Some of these robots can communicate amongst themselves, but they do offer
insight issues others have run into before when implementing flocking. There are also examples of
algorithms which have been developed for flocking behaviour between autonomous robots (CITATION).
This previous work has given the field a base of understanding which we can pull from in our project.

https://arxiv.org/ftp/arxiv/papers/1310/1310.3601.pdf - Previous autonomous robot flocking

research/algorithm

https://ieeexplore.ieee.org/document/6095129 - fixed wing flocking example

3.1.4 Technical Complexity

Our project includes different subsystems, including: LIDAR controls, Servo Control systems, Cliff and Edge
detection systems, Wall/Bump Systems and potentially more, if we, as a group, decide that we need different
equipment to complete our task. Implementation of these systems systems will be a challenge of its own, as
there is no guarantee that they will interact well with each other.

After that we will test the logic of the previous team on the physical application, and evaluate if it will fulfill
our needs. Our current plan is to design a robot template that can be implemented for any type of physical
application allowing the algorithms we create to be reused for other platforms. We will start by moving their
C code into C++, as an Object Oriented design for the template will create a better structure for our project.

3.2 Design Exploration

3.2.1 Design Decisions

So far we have made two major decisions: Convert the previous year’s C code into C++ and Exchange the
previous year's Direction LIDAR/servo with an Omnidirectional LIDAR. We are not completely sure on how
the Dance implementation will work. Due to that we are holding off on making any large decisions
regarding that aspect of the project.

3.2.2 Ideation

In regards to the Omnidirectional LIDAR, we went through a couple of different design options. Including;:
1. Keeping the previous project’s directional LIDAR

2. Using the on board IR and Sonic Sensors
3. WIFI strength triangulation
4. Cameras and vision processing

We chose the OmniDirectional LIDAR as it seems to provide the best aspects of most of the previous design
considerations. As the LIDAR does both the Sonic and IR tasks in one sensor. And eliminates the need for a
rotating servo that the directional LIDAR needs. The WIFI option would not be accurate enough for our
needs, and the cameras would need more environment setup then the other options.

https://arxiv.org/ftp/arxiv/papers/1310/1310.3601.pdf
https://ieeexplore.ieee.org/document/6095129

3.2.3 Decision-Making and Trade-Off

The WIFI and Camera with vision processing would not be viable due to the low accuracy those systems

would provide. Aswell as the cameras would need extra environment setup adding to its complexity. Both
types of LIDAR provide greater accuracy and scannable area compared to the Sonic and IR sensors which
lack the technological advances of LIDAR. Finally we settled on the omni-directional LIDAR due to the
scanning area. This will allow the sensor to easily track both the lead bot and obstacles without extra
complexity on our part.

nal LIDAR

Simplicity Accuracy Scan Area Price
WEIGHT 1 3 3 2
directional 2 4 3 3 29
LIDAR
IR & Sonic 6 3 2 1 23
WiFi Tri 1 2 4 4 27
Camera & 2 1.8 2.5 3 20.9
Vision
Omni-directio |3 3.5 6 4 39.5

3.3 Proposed Design

3.3.1 Design Visual and Description

[
L]
L]
L]

The diagram above shows the organization of our Roomba flock-swarm. The dark grey boxes represent our

omni-directional LIDAR. To allow the LIDAR to locate other bots we will use long pvc pipes, represented as
light grey cylinders above, as reliable markers for the sensors to identify. Since they will be the same size we
can configure the robot to reliably identify that marker and track it for relative position.

3.3.2 Functionality

Determining a follower’s next move will be a proportion of the follower’s distance to the leader and the
relative angle between the follower’s heading direction and the leader’s detected angular position. If the
follower reads the leader as moving outside the desired angular position, the follower will alter its direction
to maintain a lock on the leader, constantly modifying the left and right speeds to maintain distance and
angle from the leader.

To allow followers adequate headroom to catch up to a maneuvering leader, the leader’s maximum allowed
speed should be around half to three-quarters that of the iRobot Create’s top speed. This will ensure that
followers are able to catch up to the leader if it begins a maneuver like a turn. Since the follower on the
outside edge of the turn must travel a longer distance to maintain relative position it needs to move faster
than the leader to do so. This helps ensure that the follower’s movement wouldn’t require it to exceed the
maximum possible speed.

3.3.3 Areas of Concern and Development

The biggest area of concern is getting the LIDAR to accurately identify and measure the distance and
direction of the leader. The inherited project used a direction LIDAR on a servo in which they controlled the
angle of the sweeping scan following the leader, our proposed solution will use an omni-directional LIDAR

which will look around in all directions to both follow the leader and help avoid obstacles. Since the
previous project used a simpler LIDAR solution we will have to greatly modify their code to work with our
more elaborate system. It is also new technology for any of our group members to use with a Roomba so it
may take more time to properly connect. Early testing and a strong design will help us develop a solution
that will be accurate and minimize the changes needed to the inherited code.

NOTE: The following sections will be included in your final design document but do not
need to be completed for the current assignment. They are included for your
reference. If you have ideas for these sections, they can also be discussed with your TA
and/or faculty adviser.

/*

3.4 Technology Considerations

Highlight the strengths, weakness, and trade-offs made in technology available.
Discuss possible solutions and design alternatives

3.5 Design Analysis

- Did your proposed design from 3.3 work? Why or why not?

- What are your observations, thoughts, and ideas to modify or iterate over the design?

3.6 Design Plan

Describe a design plan with respect to use-cases within the context of requirements, modules in your design
(dependency/concurrency of modules through a module diagram, interfaces, architectural overview),
module constraints tied to requirements.

*/

