Dancing Roomba Swarm

Team Members: Joshua Arment

Noah Kiel Adam Brandt Greyson Jones

Devon Kooker Marcy Anderson Hunter May

Client & Faculty Advisor: Dr. Tyagi

Motivation

Design a collection of Roombas that will follow a lead Roomba that moves via song analysis based on certain specifications.

Use Cases

Aerodynamic Trucking * Organized mass cleaning Fire Rescue Drones ** National Defense Systems ** Self Driving Cars **

Design Requirements

Functional Requirements:

- The follower Roombas should not receive any ** controls and should rely only on their own sensor data
- Lead Roomba will interpret songs to create a dance routine

Non-Functional Requirements:

Technical Details

Technologies:

Limitations:

- **RP LiDAR sensor** **
- iRobot Create 2 *
- Tiva Launchpad **
- C coding language **
- Code Composer **
- Roomba battery size
- Accuracy of sensor **
- Processing power of Tiva launchpad

Components purchased for the Roomba will ** cost no more than \$500

Engineering Constraints:

Follower Roombas must follow behind the lead Roomba at a distance of 70cm

Operating Environment:

Roombas should be able to follow each other in an area with no obstacles

Relevant Standards:

- IEEE 802.11 Wireless Networking **
- IEEE 754 Floating point arithmetic ** specifications

We used regression, system, and acceptance testing to verify that the follower Roombas accurately tracked the lead Roomba and that changes integrated successfully into the system